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SUMMARY 
Using weighted discretization with the modified equivalent partial differential equation approach, several 
accurate finite difference methods are developed to solve the two-dimensional advection-diffusion equation 
following the success of its application to the one-dimensional case. These new methods are compared with 
the conventional finite difference methods in terms of stability and accuracy. The new methods are more 
accurate and often more stable than the conventional schemes. 
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1. INTRODUCTION 

In this article the two-dimensional advection-diffusion equation 

a? a? af azz* a2t 

at ax ay ax2 y a y 2  
-+  u - +  v - - a C I , - - a  - = O  

is considered in the domain 0 I x I 8,Os y I 5 with 8 and 5 fixed, where f(x, y, t) is a transported 
(advected and diffused) scalar variable, u > 0 and u > 0 being constant speeds of advection and 
a, > 0 and ay > 0 being constant diffusivities in the x- and y-direction respectively. Various 
numerical techniques such as the finite difference and finite element methods have been used in the 
past to solve (1) approximately. Finite difference methods (FDMs), including both conventional 
and some new ones developed here, will be compared theoretically and in practice. Dirichlet 
boundary conditions will be imposed on (l), so the values of f(0, y, t), f ( 8 ,  y, t), f(x, 0, t) and f ( x ,  5 ,  t) 
will be assumed known with the initial condition f(x, y, 0) given. 

Equation (1) is a linearized version of the partial differential equations which describe 
advection-diffusion of quantities such as mass, heat, energy, vorticity, etc. For example, equation 
(1) has been used to describe heat transfer in a draining film,' water transfer in soils,2 dispersion of 
tracers in porous media,3 the intrusion of salt water into fresh water aquifers," the spread of 
pollutants in rivers and ~trearns,~ the dispersion of dissolved material in estuaries and coastal 
seas,6 contaminant dispersion in shallow lakes,7 the spread of solute in a liquid flowing through a 
tube,* long-range transport of pollutants in the atmosphere' and forced cooling by fluids of solid 
material such as windings in turbo generators." 
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The advection-diffusion equation in both one- and multi-dimensional forms has been solved 
using FDMs for the transient as well as the steady case. ''+ ' Recently a new technique involving 
weighted discretization and the modified equivalent partial differential equation (MEPDE) has 
been successfully used to develop highly accurate finite difference equations (FDEs) for the one- 
dimensional advection e q ~ a t i o n , ' ~ , ' ~  the one-dimensional diffusion equation' and the one- 
dimensional advection-diffusion In this paper the technique is extended to 
produce several new FDMs for solving the two-dimensional transient advection-diffusion 
equation (1). 

2. THE MODIFIED EQUIVALENT PARTIAL DIFFERENTIAL EQUATION 

Consider the finite difference equation (FDE) 

in which LA is a finite difference operator and T J , ~ = z (  jAx,  kAy, nAt) is the numerical approxi- 
mation to t( jAx,  kAy, nAt), j = O( 1) J ,  k = O( 1) K ,  n = O( 1)N, Ax = O/J,  Ay = </K, At = TIN, where 
T =  NAt is the final time at which a solution is required. If (2) is consistent with (l), then a Taylor 
series expansion about the ( j ,  k, n)th gridpoint for each term in (2) will give an equivalent partial 
differential equation (EPDE) of the form 

which is the partial differential equation actually solved by (2). The summed terms in (3) form the 
truncation error which indicates the order of accuracy of the FDE (2). Similar to the one- 
dimensional case, the MEPDE is obtained from the EPDE by converting all derivatives of (3) 
involving a/&, except &/at, into derivatives of x and y only. The truncation error of the MEPDE 
then includes only derivatives in x or y or both. There are therefore fewer terms of the same order 
to be dealt with in the MEPDE than in the EPDE. The procedure of obtaining the MEPDE from 
the EPDE for the one-dimensional case and its PASCAL implementation are described in Noye 
and Hayman.16 The extension of this procedure to the two-dimensional case has been implemen- 
ted and used extensively in the work leading up to this paper. 

The general form of the MEPDE for (1) is given by 

az ar aT a Z T  a z z  p apT  
- +u-  + u -  -a,- -ay- + 1 c cq,p-q a t  ax ay a x 2  a y 2  p = 2  q = o  axqayp - 4 

= 0, (4) 

where the terms under the summation signs form the truncation error. Note that for each p there is 
a total of p +  1 derivatives of the same order involved in the MEPDE. 

In the following, a FDM is said to have accuracy of rth order if Cp,p-q=O,  q=O(l)p, for all 
p=2(l)r ,  where at least one Cr+13r+l -,#O, q=O(l),r+ 1.  The notation q=O(l)p indicates that q 
takes all integers from 0 to p ,  in steps of 1. If any of C z , 2 - q # 0 ,  q=O(1)2, then the coefficients a, 
and/or ay are altered and/or a term involving a*a/axdy is introduced, so some form of numerical 
diffusion or anti-diffusion is incorporated in the method. The method is first-order accurate in this 
case. 

Using weighted differencing in order to construct higher-order schemes,l7, '' weights are used 
to eliminate from the MEPDE as many as possible of the terms containing the derivatives 
dpz/dxqdyp-q, q =  l(1)p- 1, p =  2, 3, . . . , to develop FDMs of higher orders of accuracy than 
conventional methods. 
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In the following, the notation (nl, n 2 )  will be used to denote a stencil with n, gridpoints at the 
(n+ 1)th time level and n, gridpoints at the nth time level. The stencils to be used for explicit 
methods in this paper are the (1 ,5)  and (1,9) stencils shown in Figure 1. The (5 ,5 )  and (9,9) stencils 
illustrated in Figure 2 will be used for implicit methods in this work. In addition, two semi-implicit 
methods will also be developed using the (2,5) and (2,9) stencils shown in Figure 3. 

3. SOME CONVENTIONAL METHODS 

The FTCS explicit method 

The FTCS (forward time, centred space) FDM is based on the (1,5) computational stencil 
shown in Figure l(a). It uses centred space (CS) difference forms for all the spatial derivatives and 
the forward time (FT) difference form for the time derivative. The FDE so obtained is 

................... (n+l ) th  time level -- 
nth time level -* 

k-1 

(a) ib 

Figure 1. The (a) (1,5) and (b) (1,9) stencils 

.... (n+l ) th  time lev 

k+ 1 

... nth time level ... 
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j-1 j j+l j-1 j j+l 

.... 

k+ 1 

... nth time level ... 
k-1 . . .  

j-1 j j+l j-1 j j+l 
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Figure 2. The (a) (5,5) and (b) (9,9) stencils 

......... (n+l)*h time level--- - 
-.- nth time level -- k 

k-1 k-1 

j-1 j j+l j-1 j j+l 
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Figure 3. The (a) (2,5) and (b) (2,9) stencils 
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+ (cy/2)(2R,' - 7j", k + 1 + (cx/2) (2Rh;l - lb;+ 1, k 7 ( 5 )  

where c,  = uAt/Ax, c,  = vAt/Ay are Courant-type numbers and R,, = uAxfcL,, RAY = vAy/ay are 
Reynolds numbers. The MEPDE of this FDE has the coefficients of the leading (first-order) error 
terms given by 

C2,0 = ~ A x c , / 2 ,  C l ,  =uvAt, C0,2  = VAYC,/~.  ( 6 )  

This implies that the FTCS method introduces numerical diffusion in both the x- and y-directions 
as well as that due to the cross-derivative term d2T/axay. Clearly this method is only first-order 
accurate. 

Application of von Neumann stability analysislg shows that ( 5 )  is stable if 

c,Ri; +c ,R, , ' I f  (7) 

c,RA, + cyRAY 2 2 .  (8) 

4C R ,  5 C - ' ,  (9) 

and 

If R,, = RAY = R ,  and c, = cy = c,  these yield the stability condition 

which is more restrictive than the corresponding criteria for the one-dimensional FTCS FDM.' 
The stability region for (9) is shown by the vertically shaded region in Figure 4. 

The upwind explicit method 

The upwind method also uses the (1,5) computational stencil, but with backward space (BS) 
difference forms for the spatial derivatives in the advective terms, CS difference forms for the 
derivatives in the diffusion terms and the FT difference form for the time derivative. The FDE so 
obtained is 

0.1 1 10 100 1000 
CELL REYNOLDS NUMBER Ra 

Figure 4. The von Neumann stability region in the (R,,, c )  plane for the FTCS (vertical lines) and the upwind method 
(horizontal lines) 
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z ~ , ~ ' = C , ( R ~ ~ + l ) T j " - , , k $ C , ( R ~ ~ +  1)Zy ,k -1  

+ [ 1 - C,( 1 + 2R;:) - Cy( 1 4- 2R,;')] T:,k + C,R,;'Ty+ 1 , k  + CyR&lTy,k+ 1 ,  (10) 

for which the leading (first-order) error terms in the MEPDE (4) have coefficients given by 

Cz, 0 = - UAX( 1 - ~,)/2, Cl.1 =UvAt, Co,2= -vAy(l-cY)/2. (1 1) 

Therefore the upwind method is first-order accurate and, like the FTCS method, introduces 
numerical diffusion in the x- and y-directions as well as that due to the coefficient Cl , l .  
Application of the von Neumann stability analysis19 shows that the stability requirement for (10) 
is 

c,(2R,;' + 1) + cY(2R,;1 + 1) I 1. 

RA 2 4 ~ / (  1 - 2 ~ ) ,  

(12) 

(13) 

If c, = cy = c and RAx = RAY = R,, this condition becomes 

which is twice as restrictive as in the one-dimensional case discussed in Noye and Tan.17 The 
stability region for (13) is shown by the horizontal shading in Figure 4. 

The Crank-Nicolson-type implicit method 

Discretizing (1) at the point midway between the ( j ,  k, n)th and the ( j ,  k,  n + 1)th gridpoints and 
replacing the spatial derivatives by the average of their values at the nth and the (n+ 1)th time 
levels, using centred difference forms for all derivatives, gives the Crank-Nicolson-type (5 ,5 )  FDE 

C3,0 = u(Ax)'(~ + ~:)/12, 
C,,2 =~'u(At)~/4, 

Cz, = u2v(At)'/4, 
COv3 = U ( A Y ) ~ ( ~ + C , Z ) / ~ ~ .  (15b) 

A stability analysis shows that (14) is unconditionally stable. The implicit FDE may be solved by 
application of the ThomasZo algorithm adapted for use on the resulting block tridiagonal system. 
Stability of this process is assured if the system is diagonally dominant, that is if 

4(1 +c,R,;' +c,R,;')>c,(~R,,' + 1)+~,(2R,;' + 1)+JcX(2R,;' - I ) / +  JcY(2Ri,,l - 1)1 (16) 

(see Feingold and Varga'l). For simplicity, assuming that R,, =RAY= RA and c, = cy = c, this 
solvability condition becomes 

RA I ~ c / ( c  - 1). (17) 
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4. IMPROVED EXPLICIT (1,5) AND SECOND-ORDER (1,9) METHODS 

Improved ( 1 ,  5 )  explicit method 

For the (1,5) stencil, two weights 4, y can be meaningfully introduced through the use of the 
forward time approximation applied to a?/& and the centred space approximation applied to 
azZ^/8x2, 82z^/8y2 at the ( j ,  k ,  n)th gridpoint, with the following weighted forms for the advective 
derivatives: 

(18) 
at  a; 
ax aY 
- z $ x B S + ( ~ - ~ ) X C S ,  -- - y x BS+(1 - y )  x CS. 

The weighted FDE so obtained is 

Ty,;’ =(C,/2)(4 + 1 + 27,;’)~;- 1 , k  +(C,/2)($- 1 + 2Ri$;l)tj”+ 1 , k  

+(1 - 4c,-y~,-2~,R,;’ -2c,Ri;)t?,, 

+ (cy/2)(? + + 2R,,‘ )$,k - 1 + (cy/2)(y- + 2R,,’ l z y , k  + 1 .  (19) 

(20) 

The leading (first-order) error terms in the MEPDE for (19) have the coefficients 

C2,o =MAX( - 4 + ~,) /2 ,  C13 1 =UUAt, C0,2 = UAY( - y +~,)/2.  

The numerical diffusion introduced by the first and last of these may be eliminated by setting 
4 = c, and y = c,, but there still remains a first-order error term involving d2z/axdy. The resulting 
improved first-order FDE for this (1,5) stencil is 

which is the two-dimensional version of the Lax-Wendroff 22 method. 

which satisfy 
A von Neumann stability analysis19 indicates that (21) is stable for values of RA,, RAY, c,, cy 

RAx R A ~ c ~ c ~  4 (224 

and 
c,(R,;’ +c,)+c,(R;t + c , ) l l .  

For R,, = RAY = R, and c, = c, = c, these become 

4C/( 1 - 2 C 2 )  5 RA 5 2/C, (23) 
which is the region of the (RA, c) plane shown by the horizontal shading in Figure 5. This stability 
region is larger than that for the FTCS method, but is smaller than that of the upwind method, 
particularly for large RA. 

A second-order (1,9) explicit method 

To obtain FDMs of greater accuracy, more gridpoints must be used in order to introduce extra 
weights so that more terms in the truncation error of the MEPDE (4) may be eliminated. Adding 
four extra gridpoints ( j -  1, k -  1, n),(j-1, k+ 1, n), ( j +  1, k - I ,  n) and ( j +  1, k +  1, n) to the(1,5) 
stencil of Figure l(a), it becomes the (1,9) stencil of Figure l(b) and the error terms involving 
d2z/dxay in the MEPDE of (21) may be eliminated by using the approximation 
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0 . . . . . . ... . . . . . - ... . . . . . . . .. . . . . . . . .. 
0.1 1 10 100 1000 

CELL REYNOLDS NUMBER Ra 

Figure 5. The von Neumdnn stability region in the (RA,  c)  plane for the explicit (1,9) method (vertical lines) and the explicit 
(1,5) method (horizontal lines) 

which has a truncation error of 0 {(Ax)’, (Ay)’}. The method of obtaining a more accurate FDE 
through replacement of error terms in the MEPDE has been described for the one-dimensional 
case by Noye and Hayman.16 Consider the finite difference equation (21) written in the form 

in which a - l ,o ,  a,,,, u ~ , ~ ,  u , , ~  and 
results in (20) with 4 = c, and y = c,, this may be written in the alternative differential form 

are the corresponding coefficients in (21). Using the 

Subtracting the error term uv(At)’a’z/axdy from (25c) is equivalent to subtracting from (25b) the 
term 

C&y( - 2;- 1, k + 1 + TJ+ 1, k + 1 + T;- 1, k - 1 - TJ+ 1 ,  k - 1 )/4* (26) 
The largest error terms in the brackets on the right-hand side of (25c) are now  AX)', (Ay)’}. 
Rearrangement gives the second-order (1,9) FDE 
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The MEPDE of equation (27) contains no first-order error terms and has the following coefficients 
of the second-order error terms: 

Setting R A x =  RAY = R,, c, = cy = c and carrying out a numerical stability analysis yields the 
stability region in the (RA, c) plane shown by the vertical shading in Figure 5. This is a larger 
stability region than either the FTCS (1,5) or the Lax-Wendroff method. It is comparable in size 
to the first-order upwind method. 

5. ALTERNATIVE SECOND-ORDER (5 ,5 )  METHODS AND A THIRD-ORDER (9,9) 
METHOD 

Using the ( 5 , 5 )  stencil of Figure 2(a) with CS difference forms for all spatial derivatives in ( 1 )  and 
the following approximation to the time derivative involving two weights q and E, 

gives the FDE 

which means that no numerical diffusion is introduced by the method. However, only two of the 
four second-order terms can be eliminated with the two weights available. Four different FDMs 
can be obtained by setting any two of the four terms equal to zero. 

For example, setting C2,1 =C,,,=O gives E=C;/~,  q=c;/4 with 

C3,o = ~(AX)’( 1 - ~:)/6, Co.3 =~(Ay)~(1-~;) /6 .  (32) 
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The resultant second-order FDE has the form (30a) with 

'- l , 0 ( c . x 7  RAx)=aO, - 1(Cy, RAy)='l,O(-C.x, -RAx)=@o, I ( - c y ,  -RAY) 
= c,(c, - 1 - 2R,;1), (33) 

A numerically implemented von Neumann stability analysis with RA, = RAY = RA and c, = cy = c 
gives the stability region in the (RA, c) plane indicated by the vertical shading in Figure 6. 
This method is stable for all RA and c 10.8. Diagonal dominance of (33) with RA,=RA,= R, and 
c, = cy = c gives the solvability region in the (RA, c) plane shown by the horizontal shading in 
Figure 6. The usable region is therefore the cross-hatched area in this figure. 

%, 0 (cx, cy, RAx, R A Y )  = 2[2 - C X ( ~ X -  Rix! )- cy(cy - 2R,;' )]. 

Setting C3,o=Co,3=0 gives 

& = (2 + 2, 7 = (2 + c,Z)/12, (34) 
but the resulting second-order FDE is always unstable in the von Neumann sense so it will not be 
considered further. 

Setting C, ,o=C, , ,=O gives 

& = (2 + cx')/l2, rl = 4 4 ,  (35) 
so that 

C2,1= u ( A x ) ~ ( c ~  - 1)/6, co, 3 = 4AY)*(1 - c,2)/6 (36) 
and the resulting second-order FDE has the form (30a) with 

a - 1.0 (cx, RAx) = '1, 0 ( -cx, - RAx) = 2  + cx(cx - 3 -6R,;' 1 7  

u O ,  - 1 (cy, RAy) = uO, 1 (-cy, - RAy) = 3cy(cy- 1 -2R,-,' )? (37) 
' 0 ,  o(Cx, C y ,  RA,, R A ~ )  = 2[4 - 3Cy(Cy - 2R,;') -Cx(Cx - 6Rlx!)]. 

A numerical stability analysis of (37) in the simplified case considered for the previous FDMs 
yields the vertically shaded stability region in the (RA, c) plane shown in Figure 7; that is, (37) is 

0.1 1 10 100 1000 

CELL REYNOLDS NUMBER RA 

Figure 6. The regions of von Neumann stability (vertical lines) and diagonal dominance (horizontal lines) for the 
alternative ( 5 , 5 )  method, equation (33) 
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0.1 1 10 100 1000 
CELL REYNOLDS NUMBER RA 

Figure 7. The regions of von Neumann stability (vertical lines) and diagonal dominance (horizontal lines) for the 
alternative (5,5) method, equation (37) 

stable for c 5 0 . 5  and all R A ,  which is a smaller region than that of FDE (33). The solvability region 
of (37) in the (RA, c) plane is indicated by the horizontal shading in Figure 7. The cross-hatched 
region gives the values of (RA, c )  which may be used in practice. 

Setting Co, = Cz, = 0 gives 

E = ~214, q=(2+c,2)/12, 

so that 

The resulting second-order FDE has the form shown in (30a) with 

A third-order (9 ,  9 )  implicit method 

In the following, the (9,9) stencil in Figure 2(b) is used to develop a third-order (9,9) FDM for 
solving (1).  Eight weights, namely 8,6,  E,  p, 4, q, y and x, are used to cope with the many possible 
difference forms which may be used with 18 gridpoints. Discretizing (1) at the midpoint between 
the ( j ,  k,  n)th gridpoint and the ( j ,  k, n+ 1)th gridpoint means that centred time (CT) difference 
forms of second order may be used for approximating a?/at. Four weights are used in the nine 
possible centred time approximations to a?/& in a manner similar to that used in equation (29), 
that is 
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z 6 x  [CTa t ( j - l , k+ l ) ]+qx  [CTat( j ,k+l)]  

+ p  x [CT at ( j +  1, k + l)] + E  x [CT at (j- 1, k)] 
+(1-2q-2~-26-2P)x [CTat(j,k)]. 
+ E  x [CT at (j+ 1, k)] + fi x [CT at ( j -  1, k-  l)] 
+ q  x [CT at (j, k-1)]+6 x [CT at ( j +  1, k-l)]. (41) 

The average of the spatial derivatives at the two time levels n and n + 1 is taken and four weights 4, 
p ,  y and x are used in the discretization of each derivative in the following manner: 

x[$ x CS at (k- 1, n)+(l-24) x CS at (k, n ) + $  x CS at ( k +  1, n)]/2 
ax j . k  

+ [4  x CS at (k- 1, n+ 1)+(1-24) x CS at (k, n +  1)+ $ x CS at (k+ 1, n+ 1)]/2, 
')"+1/' 

(424 

1'2 x [ p  x cs at ( j -  1, n)+(l-2p) x cs at ( j ,  n)+p  x cs at ( j +  1, n)1/2 
aY j , k  

+[pxCSat(j-l,n+1)+(1-2p)xCSat(j,n+1)+pxCSat(j+1,n+1)]/2, (42b) 
a 2 t  r l + l / Z  

~ [ y x C S a t ( k - l , n ) + ( l - 2 y ) x C S a t ( k , n ) + y x C S a t ( k + l , n ) ~ / 2  -1 j . k  

+[yxCSat(k-1,n+1)+(1-2y)xCSat(k,n+l)+yxCSat(k+1,n+1)]/2, (43a) 
a2z* n + 1 / 2  

= [x x CS at (j- 1, n ) + ( l - 2 ~ )  x- CS at (j, n ) + x  x CS at (j+ 1, n)]/2 -I aY2 j , k  

+[xx CS at ( j -  1, n+ l)+(l-2x)x CS at ( j ,  n+ 1)+xx CS at ( j +  1, n +  1)]/2. (43b) 

In this way, a (9,9) FDE containing the eight weights is found, the MEPDE of which has leading 
error terms with zero values for C,,,, C l , l  and C0,' and 

C,O=[u(A~)~/6] [1-6(6+/3+~)+~: /2] ,  
C2,1= ~ ( A x ) ~ ( p -  6 - B - E )  + (uAxAy/4) [8(6 - f i )  + c,cY], 

(444 
Cl,' = ~ ~ ~ Y ~ " 4 - ~ - ~ - ~ ~ + ~ ~ ~ ~ ~ Y / 4 ~ ~ ~ ~ ~ - P ~ + ~ , ~ y l ,  
c0,3=[u(AY)2/61 [1-6(6+q+fi)+ci/21, 

with 

C4,0 = u(Ax)~[ - 1 + 12(6 + f i+&) -  3C:]/(12R~,), 

c3, 1 = -u(AX)2Ay[4(6-P)+c,cy1/C2RAx), 

C2, Z =uAx(Ay)2[4(fi + q + - c;1/(4RAx) + uAY(Ax)2[4(fi + l/(4RAy)? (44b) 
C 1 , 3 =  -uAx(AY)2[4(6-b) +cxcyl/(2RAy)? 
C O , ~ = U ( A Y ) ~  [ - 1 + 12(6 + q + P)- 3ci]/(12RAy). 

Note that the second-order derivatives have no error terms in them, a fact due to the spatially 
symmetrical CT weighting scheme for af/at. It is also noteworthy that solving C3, = O  and 
C1,3 = O  are equivalent. 
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It is obvious that C3,0 and C4,0 cannot both be zero at the same time, nor can Co,3  and Co,4. 
This leaves six non-linear equations involving eight weights. Choosing the weights 

6 = (2 + C: - 128 - 3~,~,)/24, p = (2 + C; - 126 + 3~,~,)/24, 
q = (c; - c;)/12 + E,  p = (2~:  + 1)/6, 
Y =(I  -c,”)/6, x = U  -c;)/6, 

4 = ( 2 ~ ;  + 1)/6, (45) 

gives C3,0 = Cz, = Cl, = Co, = C3, = Cl, = Cz, = 0. Substituting the weights in (47) into the 
weighted (9,9) FDE gives a third-order accurate (9,9) FDE containing the weight E, namely 

( A  - 12E + D + E - Q )  Tj”? t , k - - 4( v- 6~ - P )  Tj”? j, k 

+ ( A  - 12E - D + E - Q ) T j ” ? : , k  + 1 - 2(B - H + I - 12E)Ty,:! 1 

+ 4(B + L + M - 1 ~ E ) T J , ~  - 2(B + H + I - I~E)T!,;: 1 

+ ( A  - w+ G + Q - 12&) Tj”: t, - 1 - 4( v+ P - 6 ~ )  Tj”: :, k 
+ ( A  3- w+ G + Q - 12E)Tj”f t, k + 1 + ( A  + 12E - w- G - Q)Tj”-  1, k - 1 

- 4( v - P + 6 ~ )  Tj” - 1, k + ( A  + w - G - Q + 1 2E) Tj” - 1, k + 1 

-2(B-H-I+12&)Tj”,k- l+4(B+L-M+12&)’Ly,k 

in which 

A = 2c,R,;’ (c: - 1) + 2c,R,;’(c,Z - l), 
V=c,R,,’(c;- l)+c,R,;’(~,”+2), 
E = c; -c, + 2, 

B = 2c,R,-,’(c: + 2) + 2c,R,;’ (c,” - l), 
D = - ~c;c, + ~c,c,- c,, 
w=2c;c,+3c,c,+c,, G = C ;  +c,+ 2, 

H=~c:c,-~c, ,  I =  -c,Z+c;, P = c,c; - c,, 

Q=~c,c;, L = 6cXR,;1, M =  -~ , ”+4 .  (46b) 

The MEPDE of the FDE (46) has the coefficients of all third-order derivatives equal to zero and 
those of the fourth-order derivatives are 

which are independent of E; hence one can set E to zero for simplicity in (46) without altering the 
leading error terms. The (9,9) FDE (46) can be solved using the block Thomas algorithm referred 
to earlier. 

Although E plays an insignificant role in the order of accuracy of the FDE, it can be used to 
determine the best stability region. Assuming RA, = RAY = RA and c, = c, = c, stability regions in the 
(R,,c) plane for E = O  and 0.1 have been found. They are shown in Figures 8 and 9 by means of 
vertical shading. The requirement of diagonal dominance of (46) in the same simplified case gives 
the solvability regions in the (RA, c) plane for E = O  and 0.1 shown by the horizontal shading in 
Figures 8 and 9. 

After testing various values of E,  it was found that E = 0 gave the best combined solvability region 
and stability region among the values of E tested, so the value E = O  was used in (46) for the 
numerical tests described in Section 7. 
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Figure 8. The regions of von Neumann stability (vertical lines) and diagonal dominance (horizontal lines) for the third- 
order (9,9) method for E = 0 

0.1 1 10 100 1000 
CELL REYNOLDS NUMBER R A  

Figure 9. The regions of von Neumann stability (vertical lines) and diagonal dominance (horizontal lines) for the third- 
order (9,9) method for ~ = 0 . 1  

6. SEMI-IMPLICIT METHODS 

If in an implicit method there are only two unknowns in a given co-ordinate direction at the new 
time level in the stencil used, then the FDE based upon it can be solved efficiently in an explicit 
manner by marching across the grid in that direction at the new time level. This combines the 
advantage of increased time-stepping stability of implicit methods with the advantage of the speed 
of computation of explicit FDMs. In this section, the (2 ,5)  and (2,9) stencils shown in Figure 3 are 
used to develop two such semi-implicit FDMs. 
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A second-order ( 2 , 5 )  semi-implicit method 

Consider firstly (1) discretized on the ( 2 , 5 )  stencil using three weights y ,  I$ and f l  in the following 
manner: 

~ l : , k = y x [ F T a t ( j - l , k ) ] + ( l - y ) x [ F T a t ( j ,  k)], 

!?/I z Cp x [BS using(j- 1, k )  and ( j ,  k)] +( 1 - I $ )  x [CS from ( j -  1 ,  k) to ( j +  1 ,  k)], 

iil” = / l x [ B S u s i n g ( j , k - l ) a n d ( j ,  k)]+(1-fl)x[CSfrom(j,k-l)  t o ( j ,  k+l) ] ,  

ax j , k  

aY j , h  

E /  z C S  from ( j - 1 ,  k) to ( j + l ,  k), 

?/ ECS from ( j ,  k-1)  to ( j ,  k + l ) .  

ax2 j , k  

aY2 j . k  

Using these approximations yields a weighted FDE which has the MEPDE with coefficients of the 
errors involving the second-order derivatives given by 

Setting Cz,o = Cl, = Co, = O  yields the following values for the weights: 

I $ =  --C.K, p= - C Y ,  y = - c,(c, + 2)/2.  (50) 

Substitution of these in the weighted FDE gives the second-order ( 2 , 5 )  FDE 

This equation has the MEPDE for which the coefficients of the leading (second-order) error terms 
are given by 

Given known boundary values T:+jkl, equation (51) can be used to march across the grid in the 
x-direction for each value of k = l (1)K - 1 .  Investigating the stability of this marching procedure 
requires 11 +c,( >I  1 -c,(, which is always true as c,>O. Thus (51) is always marchable. 

A numerical stability analysis of (51) in the simplified case c, = c ,  = c, RA, = RAY = R A  considered 
earlier yields the stability region in the (RA, c) plane shown in Figure 10. This region is very 
restricted especially for large values of cell Reynolds numbers. 
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Figure 10. The von Neumann stability region of the (2,5) second-order semi-implicit method 

An alternative discretization on the (2,9) stencil using seven weights j?, 4, E, 6, w, p and y may be 
achieved in the following manner: 

W L  
% j? x [FT at ( j - 1, k)] + (1 - j?) x [FT at ( j ,  k)], 

!!? [ % ( E  x [BS using (j- 1, k+  1) and ( j ,  k + l)] 
ax j,k 

+ ( + E )  x [CS using(j- 1, k +  1) and (j+ 1, k +  l)]} 
+{6x[BSusing(j-l ,  k) a n d ( j + l ,  k)] 
+(1-2+-6)x[CSusing(j-l, k) to ( j + l ,  k)]) 
+ ( E X  P S  using( j -  1, k-  1) and ( j ,  k-  l)] 
+ ( 4 - ~ )  x [CS using(j- 1, k-  1) and ( j +  1, k -  l)]}, 

!!/I z (w  x [BS using( j -  1, k - 1) and ( j -  1, k)] 
aY j,k 

+ ( y  -w)  x [CS using( j- 1, k - 1) and (j- 1, k +  l)]} 
+ (p x [BS using ( j ,  k - 1) and ( j ,  k)] 
+ (1 - p - 2 y )  x [CS using ( j ,  k - 1) to ( j, k + l)] } 
+{wx[BSusing(j+l ,  k - l ) a n d ( j + l ,  k)] 
+(y-w) x [CS using(j+ 1, k -  1) and ( j+  1, k +  l)]}, 

"/" * 4 x ( C S  at k+1)+(1-24)x(CS at k )+4x(CS  at k-l), 
j,k 

(53) 
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Substituting these approximations into equation (1) yields a weighted (2,9) FDE which has the 
MEPDE with coefficients of the leading error terms given by 

and 
C3,0 = u(Ax)2(1 + 3cX + 2c:)/6 #O, 
C2,1 = U ( A X ) ~ ( ~ ~ - ~ E C , - ~ C , - ~ ~ , R , ; ’  +~,)/2, 

c1.2 =u(AY)z4, 
Co, 3 = u(Ay)’( 1 - ~ O C ,  - 3pc, - 6c,R,,’ + 2~;)/6. 

(55) 

Note that C3,0 is never zero since Ax#O and only one of C2,0  and Co.3 can be made zero. Setting 
C,,,= C, ,  =Co,, = C2, = Cl ,  =O yields the weights 

E = - (6 + cx)/2, 
(56) 

There appears to be two free weights in this system, but on substitution back into the weighted 
(2,9) FDE, a second-order (2,9) FDE is obtained which contains no weights, namely 

C X  9 
4=0, p= - 

0 = (c, - pY2, y = c,[ Ri ;  -(6 + c, + 1)/2]. 

-2c x T?+’  ~ - l , k + ~ ( l  a p , q T j ” + p , k + q  (574 
p =  - 1 q =  - 1 

in which 

a - 1 ,  - 1 (Cxr c y ,  RAx)= a- 1 , 1  (ex, - c y ,  RA.x)= -(c: -c; -2cxcyR,;1 + c$c, + cxc,)/2, 
a - 1, o(cx, c,, RAx) = -(cx + c; -2c,R,;’), 
ao, -1(cX, c,, RA,, RA,)=(c$-2cXc,R,;’ +c~c,+c,c,+c,+~c,R,,~),  
ao,o(cx,  cY, RAx, RAY)= -2(2cxR,;1 +2cyRi,’ - 1 -ex), 

ao,l(cx, c y ,  RAx, R~,)=-ao,-i(c, ,  -c,, RAx,-RAy), 
Ql ,  -1  =a-1, -1, a1,o =a-  1,0> %,1= a-1.1. (57W 
The coefficients of the second-order error terms in the MEPDE of (57a) are given by 

C3, = u(Ax)’( 1 + 2 ~ $  + 3cx)/6, 

cz, 1 = c 1,2=01 

co,3 =O(AY)2c1 -C,(C,+Rdyl)l/6. 
(58) 

The coefficients of rj”f : ,k  and rj”,il in (57) are the same as in (51) and therefore (57) is also always 
marchable. Also, a numerical stability analysis of (57) gives the same stability region in the (RA, c) 
plane as for (51) illustrated in Figure 10. 

The second-order errors in both the (2,5) and (2,9) methods may be reduced by marching in the 
positive x-direction using (51) and (57) and then in the negative x-direction using (51) and (57), with 
-Ax replacing Ax at alternative time levels. For example, (51) becomes 

2( 1 - cx)Tj”,: + 2CxTj”z i, k = - cX(2R,;1 + cx + 1)rj”- 1 , k  + c,(2R,,’ + C, - 1)Ty.k  - 1 

+2[1 +cx(2R,;’+c,+ 1)-cy(2Ri: +cy)]Ty,k 

+ c,(2R,,’ - c y -  1)T:, k + 1 -cx(2R,;’ + cx + I)$+ 1, (59) 
for the march in the negative x-direction. 
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7. A NUMERICAL TEST CASE 

To test FDMs developed for solving (l), a special problem for which an analytic solution is 
available must be obtained. In detail, (1) is solved in the rectangular region x E [0,2] and y E [O, 21 
with the initial condition 

(x-0.5)’ - (y-0.5)’ 

a, 
An analytic solution to the above problem is 

(X - ut - 05)’ (y - ~t - 0.5)’ - 1 qx, y, t)’ __ 
4 t + l  (- ax(4t + 1) a,(4t + 1) 

Since Dirichlet boundary conditions are assumed for this rectangular region, the appropriate 
boundary values of z(x, y, t) are obtained directly from (61). 

The initial condition (60) is a two-dimensional Gauss pulse centred at  (x, y)=(05, 0 5 )  
with a pulse height of 1. Choosing a, = ay = 0.01 and u = u = 0-8, then at t = 1.25 this pulse will 
have moved to a position centred at  (x, y)=(1.5, 1.5) with a pulse height of &. The initial condition 
and the pulse at t = 1.25 are illustrated in Figure 11; the initial condition is shown in the region 
(x, y ) ~  (0, 1) x (0, 1) and the exact solution in the region (x, y ) ~ ( l ,  2) x (1 ,  2). 

The modelling parameters used in the test are c, = cy = 0.4, RA, =RAY = 2, t = 1.25, a, = ay = 0.01, 
u = u = 0.8; that is, a snapshot of the travelling Gauss pulse is taken when it is centred at (1.5, 1.5) 
and then compared with the exact solution. Contour plots of the numerically approximated pulse 
in the subregion x ~ ( l , 2 ) ,  y ~ ( 1 ,  2) are drawn for each test carried out. The contour plots of the 
initial pulse in the subregion x E (0, l), y E (0, 1) and the exact solution, which depict concentric 
circular contour lines for several selected contour values centred at x = y =  1.5, are shown in 
Figures 12(a) and 12(b) respectively. 

Test results are also presented in tabular form and include the average absolute error, the 
maximum absolute error, the minimum value of z and the CPU time used. The minimum value 

0 

X 

Figure 11. Three-dimensional perspective views of (a) the initial pulse and (b) the exact pulse after 1.25 s, for the numerical 
test 
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(a) (b) 

Figure 12. The contour plots of (a) the initial pulse in the subregion {xe(O, 1)  and y ~ ( 0 ,  I)} and (b) the exact pulse after 
1.25 s in the subregion { x e ( l ,  2) and y ~ ( 1 ,  2)) 

Table I. Numerical test results for explicit FDMs; R,, = RAY = 2, c, = c,, = 0.4, t = 1.25 

Method Average /error1 Maximum lerrorl Minimum 7 CPU time 

FTCS 3.94x 10-3 1.12 x 10-1 0 69 s 
Upwind * 2.65 x 10-3 6-63 x lo-’ 0 136 s* 
Lax-Wendroff 1.74 x 10-3 2.34 x lo- ’  0 96 s 
Second-order (1,9) 3.33 x 10-4 6.03 x 10-3 0 98 s 

* The method is unstable for these parameters so c, = cy =0.2 with R,, = RAY = 2 were used instead. The smaller 
time step involved meant a larger CPU time than for the FTCS method. 

Table 11. Numerical test results for implicit FDMs; R,, = R A Y  = 2, c, = cy = 0.4, t = 1.25 

Method Average ]error] Maximum /error] Minimum 7 CPU time 

Single-sweep (2,5) 
Double-sweep (2,5) 
Single-sweep (2,9) 
Double-sweep (2,9) 
Crank-Nicolson (5,5) 
Alternative ( 5 , 5 )  (33) 
Alternative (5,5) (37) 
Alternative (5,5) (40) 
Third-order (9,9) 

5.72 x 10-4 
6.35 x 10-4 
5.69 x 10-4 
6.41 x 10-4 
3.37 x 10-4 
2.56 x 10-4 
2.01 x 10-4 
2.01 x 10-4 
1.43 x 10- 5 

1.24 x lo- ’  
1.30 x lo- ’  
1.26 x lo- ’  
1.32 x l o - *  
8 . 7 0 ~  10-3 
6.25 x 10-3 

2.68 x 10-3 
4.84 x 10-4 

268 x 

- 

- 1.12 x 10-5 
-4.56 x 10-9 
-8.52 x 
-2.63 x 

0 
0 
0 
0 
0 

63 s 
65 s 
96 s 
98 s 

19087 s 
25724 s 
26646 s 
25257 s 
30851 s 

has been included to indicate whether negative values appear in a solution which should be always 
positive. This has particular application to  the modelling of transfer of solutes, for example, as 
negative values of concentration have n o  physical meaning. 

Explicit methods 

Test results for the four explicit FDMs are listed in Table I and  the corresponding contour plots 
are shown in Figure 13. All three (1,5) methods suffer from the presence of inbuilt numerical 
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I I 

(4 
I I 

Figure 13. Contour plots of the numerical approximation at t =  1.25 s for (a) the FTCS method, (b) the upwind method, 
(c) the improved (1,5) method and (d) the explicit (1,9) method 

diffusion which is evident in the contour plots. The effect of the numerical anti-diffusion of the 
FTCS method is seen in the distribution of the contour lines in Figure 13(a), which show a higher 
pulse height than the exact solution shown in Figure 12(b). On the other hand, the numerical 
diffusion of the upwind method is evident in the lower pulse height in Figure 13(b). The contour 
plot for the Lax-Wendroff-type method in Figure 13(c) shows that the pulse has the correct height 
but its width has been compressed in the direction of propagation, indicative of the nature of the 
first-order error associated with the cross-derivative a2z/axay. 

These results are clearly explained by reference to the MEPDE of each method. Using 
transformed equations given in the Appendix, it is seen that the true solution of the model problem 
involves the initial Gauss peak being translated at speed uJ2, u =0.4, along the line y = x with 
diffusivity of cc=O-O1 acting in the same direction (considered the X-axis in the following) and 
perpendicular to it (the Y-axis), namely 

a? a? a2f a2? 
- +uJ2- - a 2  - a 7  =o. 
at ax ax ay 

The total diffusivity acting in the directions is 2a, the same as in the x-y system. 

the PDE 
By transforming its MEPDE, it is seen that use of the FTCS equation is equivalent to solving 
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Figure 14 
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(i) 

Figure 14. Contour plots of the numerical solutions at f = 1.25 s for (a) the (2.5) semi-implicit method, (b) the (2,5) double- 
sweep method, (c) the (2,9) semi-implicit method, (d) the (2.9) double-sweep method, (e) the Crank-Nicolson-type method, 
( f )  the alternative (5.5) method, equation (33), (g) the alternative (5,5) method, equation (37), (h) the alternative (5.5) 

method, equation (40) and (i)  the third-order (9.9) method 

The total diffusivity is 6~r/5; this is smaller than in the true solution, which explains the higher peak 
in the numerical result. The reduction of the diffusion along the X-direction (the line y=x)  is clear 
in the peaking of the results shown in Figure 13(a), with little change being evident in the diffusion 
along thc Y-direction (the line y =  -x). This asymmetry in diffusivity produces the elliptically 
shaped contour lines shown. 

The upwind method is equivalent to solving the PDE 

i?T 87 6a 8% a 2 T  

at o x  5 ax -+uJ2T---5-2%-+ a Y 2  . . .  =o. 

The total diffusivity is 16%/5, which is much larger than in the true solution; this explains the 
suppression of the peak in the numerical solution. In both the X- and Y-directions the diffusivity is 
larger than it  should be, the larger value in the Y-direction causing a greater spread of the contour 
lines in that direction. 

Use of the Lax-Wendroff-type method is equivalent to solving the PDE 

The total diffusivity in this equation is the same as in (62), which explains why the peaks in the 
numerical and true solutions have almost the same height. The smaller diffusivity in the X -  
direction compared with that in the Y-direction explains the crowding of the contour lines in the 
x-direction and their resultant elliptical shape. Because of the different diffusivities in the X- and 
Y-directions in (64), owing to the cross-derivative term in the MEPDE, it is clear that the 
coefficient C l ,  must be made zero as well as the coefficients C2,0 and Co,2 if the diffusivities in the 
X- and Y-directions are to have the correct values of or. That is, the numerical method must be 
made second-order accurate. 

The explicit second-order (1,9) FDM, being completely free of first-order error terms, has 
average and maximum errors about one-tenth of the Lax-Wendroff-type method. The contour 
plot in Figure 13(d) shows a pulse of about the right height with the contour lines almost circular. 
The slight distortion in the pattern of these lines is due to the second-order error terms involving 
the third-order derivatives, which are connected with wave speed errors. 
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Implicit methods 

Test results for the seven implicit FDMs are given in Table I1 and the corresponding contour 
plots in 1;igures 14. All the implicit methods except the (9,9) FDM are second-order accurate and 
this is reflected in the average absolute errors in Table 11. Since they are free of first-order error 
terms which introduce numerical diffusion, the Gauss pulse of each of these second-order methods 
has very nearly the correct peak height. However, the pulse distribution is distorted slightly owing 
to the wave speed error associated with the second-order error terms (see Figure 14). A noteworthy 
point is that the three alternative ( 5 5 )  FDMs have the pulse distorted differently (about different 
axes of symmetry) owing to that fact that their different second-order error terms are related 
differently to the wave numbers in the x- and y-directions. It  follows that the wave speed errors of 
these methods are different in the x- and y-directions. The same applies to the semi-implicit 
methods. It  should also be noted that the use ofthe double-sweep procedure with the semi-implicit 
methods reduces the distortion of the circular contours in the numerical solution, as well as 
reducing the largest negative value by several orders of magnitude. 

The third-order (9,9) FDM has errors an order of magnitude less than those of the second-order 
FDMs. The resulting Gauss pulse is almost indistinguishable from the exact solution with the 
naked eye. 

Within the accuracy of the computation (double precision on a VAK-11/780 minicomputer), for 
the test problem none of the explicit methods produced negative values in the numerical solution, 
nor did any of the fully implicit methods. However, both semi-implicit methods produced some 
small negative values, the worst being of the order of 10- '. However, the double-sweep alternative 
reduced this to approximately at the expense of slightly increased average and maximum 
errors. 

In terms ofCPU time taken, the semi-implicit second-order methods are more efficient than the 
fully implicit second-order methods owing to the fact that the former are computed explicitly 
using marching and the latter involve solving very large systems of linear algebraic equations. 
However, they have much smaller usable regions in the ( R A ,  c )  plane. From Table I ,  using the 
block Thomas algorithm takes about 3000 times more CPU time than using marching. 

8.  CONCLUSIONS 

The two-dimensional modified equation method has been successfully used with weighted 
discretizations to develop several new explicit, implicit and semi-implicit finite difference methods 
for solving the linear, constant coefficient, two-dimensional advection-diffusion equation. Use of 
the modified equivalent equation permits a proper determination of the order of accuracy of finite 
difference methods in both one- and multi-dimensional cases. In particular it gives an idea of the 
wave propagation characteristics of the methods.' 

The finite difference methods developed in this paper vary in their order of accuracy and the size 
of their stability regions. Nonetheless, they are generally more accurate and possess larger stability 
regions than conventional explicit methods such as the FTCS and the upwind methods. The price 
to pay for such advantages is the increase in computational time due to the presence of more 
gridpoints and more complicated coefficients in the FDEs, in particular for the ( 5 , 5 )  and (9,9) 
FDMs. However, in the case of the (5.5) FDM, time splitting the equation into its alternating 
direction implicit (ADI) form23 permits the multiple use of the one-dimensional Thomas 
algorithm with a considerable saving in time over the use of the block Thomas form. This splitting 
is not possible with the (9,9) FDM. 
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Development of more efficient third-order (6,9) implicit methods, which use either marching or 
the same solution technique as the AD1 method, will be reported in a future paper. 
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APPENDIX: THE TRANSFORMED ADVECTION-DIFFUSION EQUATION 

If the ( x ,  y )  co-ordinate system is rotated anti-clockwise by 8 radians to form a new ( X ,  Y )  system, 
then the partial differential equation 

az az  a7 a Z z  a Z z  a Z z  
- +u- +u- -axx- -axy- -ay,,- + . . .=o  at ax ay a X 2  axay a y 2  

transforms to 

az az  az  a Z z  a Z z  a Z z  

at ax a y  axa Y a y  
- + u- + v- - axx ~ ax2 - a x y - - a y y i  + . . . = O ,  

in which 

U = u cos 8+ u sin 8, 
V =  - u sin 8+ u cos 8, 

aXx =a,, cost 8 + ax. sin 8 cos 8 + a,,,, sin2 8, 
aXy=2sinOcos 8(a,,-a,,)+a,,(cos28-sin28), 
my,, = a,, sin28 - a,. sin 8 cos 8 + a,,,, cos2 8. 

Note that 
u 2 + v 2 = U 2 + Y 2 ,  

a,, + My. = axx + R Y Y .  
(674 

In the model problem, u = u, a,, = a,), = c1 and 8 = 4 4  radians, so the equation being solved is 

a? az a? a 2 f  a 2 t  

at ax ay a x 2  a y 2  
- +u- +u-  -a- -a- =o, 

the transformed equation being 

Note that (68) translates the initial profile of z* at speed u,/2 in the X-direction and diffuses it in the 
X -  and Y-directions by the same amount as in the x- and y-directions. 

If the MEPDE of a FDM for solving (68) is 

a z  az az  a 2 z  a Z z  a Z r  
- +u- +u-  -(a-C)- + D -  -(a-C), + . . . =o, 
at ax - ay  ax2 axay aY 
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then the transformed MEPDE is 

az az a Z 2  a Z z  

at ax ax ay 
- +uJ2- -a( l  - E - F ) ,  - E ( ~ - E + F ) ~  -t- . . .=O, 

where 

E = CJa, F = D/(2a). 
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